金刚石具有优良的电学性能:超宽的带隙,超高的击穿场强,高电子和空穴迁移率,有望成为“终极半导体”;在声学上,金刚石在所有材料中具有最高的表面声波速度和极高的杨氏模量;在光学上,金刚石可透过从远红外到紫外小于带隙能量的光子;在热学上,其导热性超过铜,因此金刚石具有跨领域应用的潜力。表1显示了金刚石材料的性能与其对应的应用领域。
表1金刚石材料的性能一、功能金刚石的合成
相对于传统金刚石高温高压(HPHT)合成方法,功能金刚石主要采用(常压)化学气相沉积(CVD)的方法。CVD金刚石分为CVD薄膜(常规金刚石膜、纳米金刚石膜,厚度小于50μm)和自支撑型厚膜(单晶金刚石和多晶金刚石)。按合成技术分为微波辅助型(MPCVD)、热丝型和直流型。MPCVD技术是目前主流的合成高质量金刚石的方法。不同CVD技术的比较见表2所示。
表2CVD合成金刚石的主要方法及特点1、宝石级的人造金刚石
高温高压(HTHP)方法是制造培育钻石的主要方法。化学气相沉积(CVD)制造培育钻石方法,近三年突飞猛进,成本大幅减低,工艺稳定性取得明显进展,已量产并工业批量投放市场。
2、金刚石半导体
金刚石被认为是制备下一代高功率、高频、高温及低功率损耗电子器件最有希望的材料,被业界誉为“终极半导体”。金刚石为间接带隙半导体材料,禁带宽度约为5.5eV,热导率高达22W/(cm·K)。室温电子和空穴迁移率高达cm2/(v·S)和cm2/(v·S),远高于第三代半导体材料GaN和SiC。另外,由于金刚石具有很大的激子束缚能(约80meV),使其在室温下可实现高强度的自由激子发射(发光波长约为nm),在制备大功率深紫外发光二极管方面具有很大的潜力,在极紫外深紫外和高能粒子探测器的研制中也发挥着重要作用。另外,对于单晶金刚石衬底材料的生长,还要有高的生长速率以及大的晶体尺寸,同时要实现金刚石的半导体功能需要对其进行有效的掺杂,使其具备良好的n型或p型导电性质。
可以展望,随着金刚石半导体技术的不断发展,未来必将突破n型掺杂技术、大尺寸高质量单晶制备及高平整度、高均匀性材料外延技术等瓶颈问题,实现更高功率性能的金刚石电子器件,从而为消费者创造更快、更轻、更简单的设备。金刚石半导体器件比硅芯片更便宜、更薄,基于金刚石的电子产品很可能成为高能效电子产品的行业标准,其将对一些高新行业和高新技术产品产生显著影响,包括更快的超级计算机、先进的雷达和电信系统、超高效混合动力汽车、极端环境中的电子设备以及下一代航空航天电子设备等。
3、金刚石的热学应用
金刚石具有目前所知的天然物质中最高的热导率(W/(m·K)),比碳化硅(SiC)大4倍,比硅(Si)大13倍,比砷化稼(GaAs)大43倍,是铜和银的4~5倍,低的热膨胀系数(0.8×10
-6~1.5×10-6K-1)和高的弹性模量等优良性能。是一种具有良好前景的优异的电子封装材料。典型的应用有金刚石增强金属封装材料(Dianmond/Cu、Diamond/Al)和热沉-金刚石衬底GaN器件等。金刚石增强金属基封装材料已经商用,其热导率已可达到~W/(m·K),随着人造金刚石价格大幅降低,单位体积金刚石颗粒的价格已接近甚至低于W、Mo等难熔金属的价格,为大规模生产创造了必备的条件。
极高的导热系数与电绝缘相结合,使得金刚石成为许多高功率密度设备的首选散热器。激光二极管结处散热就是CVD金刚石的最早应用之一。最近,在晶圆数量级上,CVD金刚石与GaN的集成已经成为可能,这种集成允许在无线电频率下实现更高的功率密度。
4、光学应用
理想的电力传输窗口将具有:
(a)非常低的总吸收(窗口和涂层的吸收系数×窗口厚度。
(b)低热膨胀系数(几何形状随温度的变化较小)。
(c)高导热率(将热量从加热物体中散开的能力)。
(d)高强度和杨氏模量(允许使用更薄的窗口)。
(e)折射率随温度变化小。
金刚石几乎全部满足上述要求,多晶金刚石在光学窗口方面有许多应用场景,部分已产业化。
除了光学窗口外,多晶金刚石还具有装饰作用,金刚石的涂层不仅具有闪光效果还有多种颜色。用于高端钟表的制造,奢侈品的装饰性涂层以及直接作为时尚制品。金刚石其强度和硬度是康宁玻璃的6倍和10倍,因此也被应用于手机显示屏和照相机镜头。
5、金刚石声学器件
金刚石密度低,杨氏模量和强度高,这使得它成为一种高性能的高频声材料。
金刚石,可以在高达70kHz的频率下保持完美的振动运动而不失真,从而提供几乎完美的声音再现。此外金刚石还具有最高的声表面波速,是用于声表面波滤波器的优秀材料,能够提高滤波频率和功率承受能力。
6、掺硼金刚石(BDD)电极
研究表明BDD是一种环保新型电极材料,作为阳极的电化学法对染料、农药、抗生素、内分泌干扰物等多种难降解的有机污染物、大分子物质等都表现出了很好的去除效果,几乎都可实现完全矿化,是一种环境友好型的污染治理方法,因而得到了越来越多的